
1

Hand Cancer Killer
Using Deep Q-Network to Learn Game

Strategies
Haoming Jiang

Abstract—Reinforcement learning plays an important roles in strategies setting in order to get a better performance. In this project, we
show that deep reinforcement learning is very effective at learning how to play the game Radian which requires player to control the
spaceship and dodge the coming bullets and survive as long as possible. The agent is not given any information other than the raw
picture which is also the only input for human beings. Also the agent is aware of how long it have survived which is the score of the
game. Our agent uses a convolutional neural network to evaluate the Q-funtion for a variant of Q-learning, and we show that it is able to
achieve good performance. Furthermore, we discuss difficulties and potential improvements with deep reinforcement learning.

Index Terms—Reinforcement Learning, Artificial Intelligence, Q-Network, Deep Learning, Convolutional Neural Network

F

1 INTRODUCTION

A RTIFICIAL intelligence always attracts human beings.
They appears in movies, novels and human’s imagina-

tion. By researching the way that human do things, we can
design the AI to do the same thing. We obtain information
from the environment, react and then change the environ-
ment. Finally we achieve our goal. However, it is not easy
for AI. The biggest challenge is to learn the optimal policy
to choose a right reaction based on current information.
Reinforcement learning is one of the most powerful tools
which can be applied in the above situation. Game , which
has will designed rules and regular movements or reactions,
is the best platform to validate this idea. Inspired by the
success of AlphaGo, we decided to explore the possibility of
applying this algorithm to the game Radian which always
makes player thinks they have ”Hand Cancer” which means
they always fails by little wrong operation.

The goal of this project is to let the agent learn how
to play the game Radian. Typical Radian aims at surviv-
ing as long as possible and getting scores as much as
possible. However the game we discuss here is a vari-
ance of Radian which has a simpler rule than the typical
one.(http://baike.baidu.com/view/3022396.htm) It is also
require player to survive as long as possible. Bullets will
appear semi-randomly on the screen. The player can control
the space ship to dodge those bullets with movement in
eight direction (up, down, right, left, up left, up right etc.)
The game score is measured by how the space ship survive.

Training the agent is quite challenge because our goal
is to provide the agent with only pixel information an the
score. The agent is provided with information regarding
neither what the space ship and bullets look like nor the
speed and the locations of them. Instead it have to learn
those characteristics and be able to generalize due to the
large state space.

Fig. 1. Screenshot of the game

2 RELATED WORK

The related work in this area is primarily by Google Deep-
mind. Mnih et al. are able to successfully train agents to play
the Atari 2600 games using deep reinforcement learning,
surpassing human expert-levelon multiple games [2], [1].
These works inspired this project, which is heavily modeled
after their approach. They use a Deep Q-Network (DQN)
to represent the Q-function for Q-learning and also use ex-
perience replay to de-correlate experiences. Their approach
is essentially state-of-the-art and was the main catalyst for
deep reinforcement learning, after which many papers tried
to make improvements. The main strength is that they were
able to train an agent despite extremely high dimensional
input (pixels) and no specification about intrinsic game
parameters. In fact, they are able to outperform a human
expert on three out of seven Atari 2600 games. Further-
more, in march 2016, the AlphaGo which take DQN as an
essential part of the whole large program, win Lee Sedol
who is the best Go player in the world. However, further
improvements involve prioritizing experience replay, more
efficient training , and better stability when training. [1] tried



2

to address the stability issues by clipping the loss to +1 or -1,
and by updating the target network once in every C updates
to the DQN rather than updating the target network every
iteration.

3 METHOD

In this section, we describe how the model is established
and the algorithm framework.

3.1 MDP Formulation
The agent situated in an environment which means the
game here. The environment is in a certain state which con-
tains the attributes of objects in the game including locations
velocity and size. Based on the state of the environment, the
agent can perform certain actions in the environment which
means the movement in eight directions. These actions
sometime result in a reward which can be the increase of the
score and penalty of the death. The environment is changed
according to the previous state and what the agent reacts.
At a new state, the agent can react again. The environment
is stochastic, which means the next stage may to be totally
predictable. Markov decision process, MDP is a sequence
of states, actions an rewards. One episode is illustrated as
bellow.

s0, a0, r1, s1, a1, r2, ..., sn−1, an−1, rn, sn, rn+1

sn is the terminal state of the process. A MDP is based on
Markov assumption, that the probability of the next state
only depends on current state and action. However the
Markov assumption is compromised at the current situation
due to the agent cannot deduce the velocity based on single
screen. In order to fix that, the current state is consist of a
set of latest screens and actions.

st = {xt−histLen+1, at−histLen+1, ..., xt−1, at−1, xt}

histLen which means history length is a hyperparameter.

3.2 Discounted Future Reward
In order to perform well in long-term, we need consider
both the current rewards and future rewards.

For a given episode of MDP, total reward is:

R = r1 + r2 + ...+ rn+1

Total future reward from time point t onward can be
expressed as:

Rt = rt + rt+1 + ...+ rn+1

Due to the stochastic environment, future reward may
diverge. For that reason it is common to use discounted
future reward instead. Here we set γ = 0.99

Rt = rt + γrt+1 + γ2rt+2 + ...+ γn+1−trn+1 = rt + γRt+1

A basic strategy is choosing the action which maximizes
the (discounted) future reward. In this game only two
rewards are defined:surviving reward and death reward. The
meanings of these two rewards are quite straight forward.
The agent will be given 0.1 surviving reward each step. In
order to emphasis the penalty of death, The agent will be
given -10 death reward when it collides with bullets.

3.3 Q-Learning

We define a Q-function Q(s,a) represent the maximum dis-
count future reward when we do action ”a” in state ”s”. In
order to get a higher final score, it is obvious that choosing
the action with the highest Q-value once the accurate Q-
function have been obtained.

Giving a close look at the relation between Q(s, a) and
Q(s, a). The Bellman Equation is easy to obtained.

Q(s, a) = r +maxa′Q(s′, a′)

The main idea of Q-learning is that we can iteratively ap-
proximate the Q-function using Bellman Equation. Details
will be demonstrated in the next section.

3.4 Deep Q-Network

Deep reinforcement learning is a general framework for AI
to learn how to play games without giving specified game
features. It take raw pixel as raw input of the algorithm.
Since the state space is too large for conventional reinforce-
ment learning, we introduce Convolutional Neural Net-
work, CNN, which is quite suitable for image processing,
into reinforcement learning. The optimized architecture of
Q-network, is used in DeepMind paper [1], is illustrated
below Fig 2.

Fig. 2. Deep Q-Network

The inputs are histLen*80*80 grayscale game screen,
while the outputs are Q-values for nine possible actions. A
typical network architecture is presented in Fig 3

Fig. 3. Deep Q-Network

Since Q-value can be any real value, so it is a regression
task, which can be optimized with simple squared error loss.



3

Algorithm 1 Updating the network

Input: a transition < s, a, r, s′ >
Do a feedforward pass for the current state s to get predicted
Q-values for all actions.

Do a feedforward pass for the next state s and calculate
maximum overall network outputs maxaQ(s, a).

Set Q-value target for action a to r+λmaxaQ(s, a). For all
other actions, set the Q-value target to the same as originally
returned from step 1, making the error 0 for those outputs.

Update the weights using backpropagation.

L =
1

2
[r +max

a′
Q(s′, a′)︸ ︷︷ ︸

target

− Q(s, a)︸ ︷︷ ︸
prediction

]2

Given a transition < s, a, r, s′ >,the network is updated
by the following steps (Algorithm 1).

3.5 Experience Replay

There is a large amount of tricks have to be applied, in order
to make the network converge. The most trick is experience
replay which is used for overcoming the correlation of the
experiences sequence.

During gameplay all the experiences < s, a, r, s > are
stored in a replay memory, which has a certain size re-
playMemorySize. When training the network, random mini-
batches from the replay memory are used instead of the
most recent transition. This breaks the similarity of subse-
quent training samples, which otherwise might drive the
network into a local minimum. Also experience replay
makes the training task more similar to usual supervised
learning, which simplifies debugging and testing the algo-
rithm. One could actually collect all those experiences from
human gameplay and then train network on these.

3.6 Exploration-Exploitation

Since the Q-network is randomly initialized, its outputs are
meaningless. As the Q-network converges, it returns more
consist Q-values. As a result, the Q-network incorporates
the exploration as a part of the algorithm. But this explo-
ration is greedy, it settles with the first effective strategy it
finds.

A simple trick to deal with this problem is ε −
greedyexploration - with probability ε choose a random
action, otherwise go with the ”greedy” action with the
highest Q-value. In our project ε decrease from 1 to 0.05
in 300000 steps.

3.7 Pre-processing

The state space is too large owing to large screen (680*480
pixels with three color channels). We preprocess the image
before using the CNN. First, we down sample the original
picture and resize it to a smaller scale. Here we test both
input scales as 80*80 and 160*160. Next, we turn the screen
into gray scale. Finally, we do binarization, which can let the
AI be sensitive to the brim of the screen, on the gray screen.
The above pre-processing denoted as φ(s)

Algorithm 2 Deep Q-learning for Radian

initialize replay memory
initialize QDN with random weights
initialize ε
Loop:

start a new episode (a new game)
initialize state s0
Repeat

extract xt from raw pixel data update state st with xt
add experience et = (φ(st−1), at−1, rt−1, φ(st)) to re-

play memory
generate uniformly a random real number u between 0

and 1
If u < ε

take a random action
Else

take the best action with highest Q-value
scale down ε
update state st with at
update current reward rt and total reward
update game and refresh screen
uniformly sample a batch of experiences from the re-

play memory
backpropagate and update DQN with minibatch

Until the aircraft crash
restart the game

End Loop

3.8 Pipeline
The whole process of the project is illustrated in the Algo-
rithm 2.

4 RESULTS

Because the limitation of the time we only do some simple
experiment without fine calibration. Through the experi-
ments, we come to partial conclusion that the deep learning
indeed can improve the performance. However, we also
show the limitation of it. A 30s demo is available online.

4.1 Testing parameters
The game was run at 30 frames per second and
historyLength = 4. The wards were: survivingReward =
0.1, deathReward = −10. The discount factor γ is set to
0.99. The ε used in exploration decrease from 1 to 0.05 in
300000 steps. The replay memory size is 30000. The size
of minibatch is set to 32. The CNN is implemented with
TensorFlow. We only bagan training after we have collect
30000 experiences.

In addition, we compared two network architectures’
performance. Also, we explored the performance of the
network in the easy mode (30 bullets) compared to the hard
mode (50 bullets).

4.2 Two network structure
Here we proposed two sets of network in Fig 2 and Fig 5.

Actually, in the second network, the last max pooling
layer should be removed. But we do not have the time to



4

Fig. 4. Deep Q-Network 1

Fig. 5. Deep Q-Network 2 with bigger raw input image

revise it. The original idea of this layer is reduce the parame-
ters in the fully connected layer and reduce the computation
load, owing to the limitation of our computational resource.

We compare two trained networks’ average performance
in 200 rounds games in hard mode with 50 bullets. For
the simple network which was trained for 3,540,000 steps,
the average performance is 2.26s. However for the complex
network which was trained for 1,020,000 steps, the average
performance is 2.5s. Although, the complex network trained
for less steps, it’s performance is better than the simple
network.

4.3 Less bullets
We also give a deeper insight on the average surviving time
which generally grow with the rounds of games that AI
have learnt. The same research is also be done in the easy
mode. Form the plot we can conclude that when the AI palt
more games, it can be trained better. As the figures show, the
performance is still improving. Be given more time, I may
reach a better performance.

5 CONCLUSION

Although we only do partial research, we can still obtained
some useful conclusions. First, the deep reinforcement learn-
ing can really improve the AI performance, however it can
not reach a high level performance with simple calibration.
However, there are serval ways to improve the result. A
more complex network seem like a better choice. Owing
to that it have to discern the little objects (lots of bullets),
the max pooling layer, which may give some computation
benefits, seems like a destructor of the network. In this
circumstance, the large quantity of the bullets may make
the task hard. A small mistake may lead to death, which
means it require the AI have to deal with low error-tolerant
rate.

Fig. 6. The average surviving time in hard mode.

Fig. 7. The average surviving time in easy mode.

REFERENCES

[1] Mnih Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A.
Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Ried-
miller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hass-
abis. Human-level Control through Deep Reinforcement Learning.
Nature, 529-33, 2015.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing
Atari with Deep Reinforcement Learning. NIPS, Deep Learning
workshop

[3] Kevin Chen. Deep Reinforcement Learning for Flappy Bird


