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Backgrounad

Pre-train =2 Fine-tune

Goal:

explore how different factor will affect the performance.
* pre-training objectives

* architectures

* unlabeled datasets

* transfer approaches



Unified Text-to-Text View

["translate English to German: That is good."

[ "cola sentence: The "Das ist gut."]

course is jumping well."

"not acceptable" ]

"stsb sentencel: The rhino grazed
on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."”

Figure 1: A diagram of our text-to-text framework. Every task we consider — including
translation, question answering, and classification — is cast as feeding our model text as input
and training it to generate some target text. This allows us to use the same model, loss
function, hyperparameters, etc. across our diverse set of tasks. It also provides a standard
testbed for the methods included in our empirical survey. “T'5” refers to our model, which we
dub the “Text-to-Text Transfer Transformer”.



Model detalls

* Encoder-decoder Transformer

* Relative Positional Self-Attention

QKT £ Srel
v Dy,

Relative Attention = Softmax V.

- S"¢l is the simplified positional embedding

the offset between the “key” and “query” being compared in the self-attention mechanism. We use
a simplified form of position embeddings where each “embedding” is simply a scalar that is added
to the corresponding logit used for computing the attention weights. For efficiency, we also share
the position embedding parameters across all layers in our model, though within a given layer each
attention head uses a different learned position embedding. Typically, a fixed number of embeddings
are learned, each corresponding to a range of possible key-query offsets. In this work, we use 32
embeddings for all of our models with ranges that increase in size logarithmically up to an offset of
128 beyond which we assign all relative positions to the same embedding. Note that a given layer is
insensitive to relative position beyond 128 tokens, but subsequent layers can build a sensitivity to
larger offsets by combining local information from previous layers.



Dataset: Colossal Clean Crawled Corpus

* Goal: the effect of the quality, characteristics, and size of

unlabeled data

* Source: Common Crawl (20TB/month, noisy)

* Data Cleaning:

(Heuristics)
* 750G

We only retained lines that ended in a terminal punctuation mark (i.e. a period, exclamation
mark, question mark, or end quotation mark).

We removed any page that contained any word on the “List of Dirty, Naughty, Obscene or
Otherwise Bad Words”.®

Many of the scraped pages contained warnings stating that Javascript should be enabled so we
removed any line with the word Javascript.

Some pages had placeholder “lorem ipsum” text; we removed any page where the phrase “lorem
ipsum” appeared.

Some pages inadvertently contained code. Since the curly bracket “{” appears in many
programming languages (such as Javascript, widely used on the web) but not in natural text,
we removed any pages that contained a curly bracket.

To deduplicate the dataset, we discarded all but one of any three-sentence span occurring more
than once in the dataset.

Additionally, since most of our downstream tasks are focused on English-language text, we used
langdetect’ to filter out any pages that were not classified as English with a probability of at least

0.99.



Downstream Tasks

* Text classification: GLUE and SuperGLUE
* Abstractive summarization: CNN/Daily Mail

* QA: SQUAD
* Translation: WMT English to German, French, and Romanian



Input & Output

* “text-to-text” format
* consistent training objective: maximum likelihood
* task-specific (text) prefix

* Mismatch label Issue

word “entailment”. Note that an issue arises if our model outputs text on a text classification task
that does not correspond to any of the possible labels (for example if the model outputs “hamburger”
when the only possible labels for a task were “entailment”, “neutral”, or “contradiction”). In this

case, we always count the model’s output as wrong, though we never observed this behavior in any
of our trained models. A diagram of our text-to-text framework with a few input/output examples is




Input & Ou

tput

* Regression Task:

* Convertto 21-

class classification

Following this approach allows us to straightforwardly use a text-to-text format for every task
except STS-B, which is a regression task where the goal is to predict a similarity score between 1 and
5. We found that most of these scores were annotated in increments of 0.2, so we simply rounded any
score to the nearest increment of 0.2 ] ing representation of the
number (e.g. the floating-point value|2.57 would be mapped to the string “2.6”). At test time, if the
model outputs a string corresponding to a number between 1 and 5, we convert it to a floating-point

value; otherwise, we tr

at the model’s prediction as incorrect. This effectively recasts the STS-B

regression problem as a

21-class classification|problem.




Input & Output

* Winograd Task (ambiguation):
* highlighting

the passage might be “The city councilmen refused the demonstrators a permit because they feared
violence.”, which contains the ambiguous pronoun “they” that could refer to “city councilmen” or
“demonstrators”. We cast the WNLI, WSC, and DPR tasks as text-to-text problems by highlighting
the ambiguous pronoun in the text passage and asking the model to predict the noun that it refers
to. The example mentioned above would be transformed to the input “The city councilmen refused
the demonstrators a permit because *they™* feared violence.” and the model would be trained to
predict the target text “The city councilmen”.

— e B
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Baseline

* Encoder-Decoder Transformer
* Denoising objective
* BERT-base Size Encoder and Decoder (2x larger)

* Multilingual Vocabulary
* 32,000 word pieces
* SentencePiece



Baseline

* Denoising objective

Original text

Thank you fef inviting me to your party last week.

Inputs

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <v> last <z~

* Drop 15% tokens



Baseline Results

GLUE CNNDM

SQuAD SGLUE

EnFr

EnRo

% Baseline average 83.28
Baseline standard deviation 0.235
No pre-training 66.22

39.82
0.090
39.77

27.65
0.108
24.04

Table 1: Average and standard deviation of scores achieved by our baseline model and training
procedure. For comparison, we also report performance when training on each task from
scratch (i.e. without any pre-training) for the same number of steps used to fine-tune the
baseline model. All scores in this table (and every table in our paper except Table 14) are

reported on the validation sets of each dataset.

Comparable to BERT-base



Baseline Detalls (Pre-train)

* AdaFactor
* Dropout: 0.1
* Max length: 512

* Batch Size: 128

pack multiple sentence intoonesample: [11111100222003333300
4 4 4]

* 34B tokens << BERT (137B) <<RoBERTa (2.2T)

* “Inverse square root” Learning Rate
* triangular is better but not comparable

* 10000 warmup



Baseline Detalls (Fine-tune)

« 218 steps

* constant learning rate: 0.001
* Batch Size: 128

* Length: 512

* 5,000 steps/checkpoint
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Model Architectures
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Model Architectures

* L + L Layer Encoder-decoder vs. L Layer Language model

* 2X parameters

» Same computation cost

* Ablation Study:

* Share parameter across Encoder and Decoder

* L/2 + L/2 Layer Encoder-decoder

Language model
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Model Architectures: Results

Architecture Objective  Params Cost GLUE CNNDM SQuAD SGLUE EnDe  EnFr  EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers  Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 37.98 27.39
Encoder-decoder LM 2P M 79.56 18.59 76.02 64.29 26.27  39.17  26.86
Enc-dec, shared LM P M 79.60 18.13 76.35 63.50 26.62 39.17  27.05
Enc-dec, 6 layers LM P M/2 78.67 18.26 75.32 64.06 26.13 38.42 26.89
Language model LM p M T3.78 17.54 53.81 56.51  25.23  34.31  25.38
Prefix LM LM P M 79.68 17.84 76.87 64.86 26.28 37.51 26.76

* Surprisingly, sharing parameters across the encoder and decoder

performed nearly as we
* and better than prefix L
* Denoising objective > L

. (ALBERT)
M. Explicit encoder-decoder structure is useful.
M objective
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Unsupervised Objectives

Objective

Inputs

Targets

Prefix language modeling
BERT-style

Deshuffling

[.i.d. noise, mask tokens
I.i.d. noise, replace spans
I[.i.d. noise, drop tokens
Random spans

Thank you for inviting

Thank you <M> <M> me to your party apple week .
party me for your to . last fun you inviting week Thank
Thank you <M> <M> me to your party <M> week .

Thank you <X> me to your party <Y> week .

Thank you me to your party week .

Thank you <X> to <Y> week .

me to your party last week .

(original text)

(original text)

(original text)

<X> for inviting <Y> last <Z>

for inviting last

<X> for inviting me <Y> your party last <Z>




Unsupervised Objectives

* LM vs. Masked LM vs. Deshuffling

Objective GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Prefix language modeling 80.69 18.94 77.99 65.27 26.86 39.73 27.49
BERT-style [Devlin et al., 2018]  82.96 19.17 80.65 69.85 26.78 40.03 2741
Deshuffling 73.17 18.59 67.61 58.47 26.11 39.30 25.62

Table 4: Performance of the three disparate pre-training objectives described in Section 3.3.1.



Unsupervised Objectives

* Masked LM

BERT-style: 15% = (90% [MASK], 10% [Random Token])
MASS-style: 15% = [MASK]

® replace spans  Thank you <X> me to your party <Y> week . <X> for inviting <Y> last <Z>
. drop tokens Thank you me to your party week . for inviting last

Objective GLUE CNNDM SQuAD SGLUE  EnDe EnFr EnRo

BERT-style [Devlin et al., 2018] 82.96 19.17 80.65 69.85 26.78  40.03 27.41

MASS-style [Song et al., 2019] 82.32 19.16 80.10 69.28 26.79  39.89 27.55
% [Replace corrupted spans 83.28 19.24 80.88 71.36 26.98 39.82 27.65

Drop corrupted tokens 84.44 19.31 80.52 68.67 27.07  39.76 27.82

Short Target & \

Fast Training Due to ColA



Unsupervised Objectives

* Corruption rate
* Not Sensitive

Corruption rate GLUE CNNDM SQuAD SGLUE  EnDe EnFr  EnRo

10% 82.82 19.00 80.38 69.55 26.87 39.28 27.44
* 15% 83.28 19.24 80.88 71.36 26.98 39.82 27.65
25% 83.00 19.54 80.96 70.48 27.04 39.83 2747
50% 81.27 19.32 79.80 70.33 27.01 3990 27.49

Table 6: Performance of the i.i.d. corruption objective with different corruption rates.



Unsupervised Objectives

* I.I.d corruption vs. span corruption (SpanBERT)
* Many small spans vs. Little large spans
* Long target vs. Short target  (No. of spans + No. of masked tokens)
* Slow vs. Fast

Span length GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Baseline (i.i.d.) 83.28 19.24 80.88 71.36  26.98 39.82 27.65

Slightly but 2 83.54 19.39 82.09 72.20 26.76 39.99 27.63
significantly 3 83.49 19.62 81.84 72.53 26.86 39.65 27.62
improvement 5) 83.40 19.24 82.05 72.23 26.88 39.40 27.53
10 82.85 19.33 81.84 70.44  26.79 3949 27.69

Table 7: Performance of the span-corruption objective (inspired by Joshi et al. [2019]) for
different average span lengths. In all cases, we corrupt 15% of the original text sequence.



Unsupervised Objectives

* Message:

* Small modification to the masked language model objective may not
leads to significant Improvement.

* Try something different!
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Pre-training Datasets

 C4: Common Crawl with heuristic filterin

* Unfiltered C4: Common Crawl only use use /angdetect to extract
English text

* RealNews-like: omitted any non-news content in C4

* WebText-like (GPT2-like): high Reddit score webpages in C4
* Wikipedia

* Wikipedia + Toronto Books Corpus (BERT)



Pre-training Datasets

Pre-training on in-domain unlabeled data can improve performance on downstream tasks.

Dataset Size GLUE CNNDM SQuAD SGLUE EnDe EnFr  EnRo
* C4 745GB 83.28 19.24 80.88 71.36 26.98 39.82 27.65
C4, unfiltered 6.1TB 81.46 19.14 78.78 68.04 26.55 39.34 27.21
RealNews-like 35GB 83.83 19.23 80.39 72.38 26.75 3990 27.48
WebText-like 17GB 84.03 19.31 81.42 .40 26.80 39.74 27.59
Wikipedia 16GB 81.85 19.31 81.29 %Ul 26.94 39.69  27.67

Wikipedia 4+ TBC 20GB 83.65 19.28 82}}8/ 73.24 26.77 39.63 27.57

Table 8: Performance resulting from pre-training onf different ddtasets. The first four variants

are based on our new C4 dataset.

Due to ReCoRD,
News domain

SQUAD, from Wikipedia

v

Due to MultiRC,
the same domain as TBC



Pre-training Datasets

Training loss

Full dataset 23°
229

227
225
223

1.0 :
° S|Ze 0a \M“Mm Dataset size
* The larger the better 0.6
0.4
0.2
0.0
0 100 200 300 400 500
Step x 1,000

Number of tokens Repeats GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Full dataset 235 0 83.28 19.24 80.88 71.36 26.98 39.82 27.65

229 64 82.87 19.19 80.97 72.03 26.83 39.74 27.63

227 256 82.62 19.20 79.78 69.97 27.02 39.71 27.33

225 1,024 79.55 18.57 76.27 64.76 26.38 39.56 26.80

223 4,096 76.34 18.33 70.92 59.29 26.37 38.84 25.81
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Transfer Approaches

* Adaptive Layers (Houlsby 2019):
* Only adaptive layers are updated

Fine-tuning method GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% All parameters 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Adapter layers, d = 32 80.52 15.08 79.32 60.40 13.84 17.88 15.54
Adapter layers, d = 128 81.51 16.62 79.47 63.03 19.83 27.50 22.63
Adapter layers, d = 512 81.54 17.78 79.18 64.30 23.45 33.98  25.81
Adapter layers, d = 2048  81.51 16.62 79.47 63.03 19.83 2750  22.63
Gradual unfreezing 82.50 18.95 79.17 70.79 26.71 39.02 26.93
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Transfer Approaches

* Gradual Unfreezing (ULMFIT):

* First unfreeze the last layer = the next lower layer

Fine-tuning method GLUE CNNDM SQuAD SGLUE EnDe  EnFr  EnRo
* All parameters 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Adapter layers, d = 32 80.52 15.08 79.32 60.40 13.84 17.88 15.54
Adapter layers, d = 128 81.51 16.62 79.47 63.03 19.83 27.50 22.63
Adapter layers, d = 512 81.54 17.78 79.18 64.30 23.45 33.98 25.81
Adapter layers, d = 2048  81.51 16.62 79.47 63.03  19.83 27.50  22.63
Gradual unfreezing 82.50 18.95 79.17 70.79 26.71 39.02 26.93




Transfer Approaches

* Multi-task learning:
* Examples-proportional mixing: 1,,; X sy,
* Temperature-scaled mixing (Multilingual BERT): 735, & s;{T

* Equal mixing: 1, « 1 worst

Mixing strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Baseline (pre-train/fine-tine) 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Equal 76.13 19.02 76.51 63.37 23.89 34.31 26.78
Examples-proportional, K = 216 80.45 19.04 77.25 69.95 24.35 34.99 27.10
Examples-proportional, K = 217 81.56 19.12 77.00 67.91 24.36  35.00 27.25
Examples-proportional, K = 28 81.67 19.07 78.17 67.94 24.57 35.19 27.39
Examples-proportional, K = 219 81.42 19.24 79.78 67.30 25.21 36.30 27.76
Examples-proportional, K = 220 80.80 19.24 80.36 67.38 25.66 36.93 27.68
Examples-proportional, K = 221 79.83 18.79 79.50 65.10 25.82  37.22  27.13
Temperature-scaled, T' = 2 81.90 19.28 79.42 69.92 25.42 36.72 27.20
Temperature-scaled, T = 4 80.56 19.22 77.99 69.54 25.04 35.82 27.45

Temperature-scaled, T' = 8 77.21 19.10 77.14 66.07 24.55 35.35 27.17




Transfer Approaches

* Pretrain =2 Multi-task learning =2 Single-task fine tune (MTDNN)

Training strategy ;LUE  CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Unsupervised pre-training + fine-tuning  83.28 19.24 80.88 71.36 26.98 39.82 27.65
Multi-task training 81.42 19.24 79.78 67.30 25.21 36.30 27.76
Multi-task pre-training + fine-tuning 83.11 19.12 80.26 71.03 27.08 39.80 28.07
Leave-one-out multi-task training 81.98 19.05 79.97 71.68 26.93 39.79 27.87

Supervised multi-task pre-training 79.93 18.96 77.38 65.36 26.81 40.13 28.04
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Scaling

* With similar computation cost

* Increasing the training time and increasing the model size can be
complementary

Scaling strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Baseline 83.28 19.24 80.88 71.36 26.98 39.82 27.65
1x size, 4x training steps 85.33 19.33 82.45 74.72 27.08  40.66  27.93
1x size, 4x batch size 84.60 19.42 82.52 74.64 27.07  40.60  27.84
2X size, 2X training steps 86.18 19.66 84.18 77.18 27.52 41.03  28.19
4x size, 1x training steps 85.91 19.73 83.86 78.04 27.47 40.71 28.10
4% ensembled 84.77 20.10 83.09 71.74 28.05 40.53  28.57
4x ensembled, fine-tune only  84.05 19.57 82.36 71.55 27.55 40.22 28.09

Table 13: Comparison of different methods of scaling up our baseline model. All methods
except ensembling fine-tuned models use 4x the computation as the baseline. “Size” refers to
the number of parameters in the model and “training time” refers to the number of steps used
for both pre-training and fine-tuning.



State-of-the-Art

Baseline + Architecture + Objective + Dataset
+ Transfer Approach + Scaling



SOA model

* Objective: span-corruption (SpanBERT)

* Longer training: 1M steps + 2048 batch size = 1T tokens
* 8x BERT, 2x XLNet, ¥2 x ROBERTa

* Model sizes:
* Small: 60M Base: 220M Large: 77/0M XlLarge: 3B XXLarge: 11B

* Multi-task pre-training: Vv
* Finetune on GLUE and SuperGLUE: 8 batch size



GLUE CoLA S8T-2 MRPC MRPC STS-B STS-B

Model Average  Matthew’s  Accuracy F1 Accuracy  Pearson  Spearman
Previous best 89.4° 69.2° 97.1° 93.6° 91.5" 92.7" 92.3%
T5-Small T7.4 41.0 91.8 89.7 86.6 85.6 85.0
T5-Base 82.7 51.1 95.2 90.7 87.5 89.4 88.6
Th-Large 86.4 61.2 96.3 92.4 9.9 89.9 89.2
T5-3B 88.5 67.1 97.4 92.5 90.0 90.6 89.8
T5-11B BO.T 70.8 97.1 91.9 59.2 92.5 92.1
QQP QQP MNLI-m  MNLI-mm QNLI RTE WNLI
Model F1 Accuracy  Accuracy Accuracy Accuracy  Accuracy  Accuracy
Previous best  74.8¢ 90.7" 91.3¢ 91.0" 99.2¢ 80.2¢ 91.8%
ThH-Small 70.0 58.0 824 82.3 90.3 69.9 69.2
T5-Base 72.6 89.4 87.1 86.2 93.7 80.1 78.8
T5-Large 73.9 9.9 £9.9 89.6 94.8 87.2 85.6
T5-3B 74.4 89.7 91.4 91.2 96.3 91.1 89.7
T5-11B 74.6 90.4 92.0 91.7 96.7 92.5 93.2
SQuAD  SQuAD  SuperGLUE BoolQ CB CB COPA
Model EM F1 Average Accuracy F1 Accuracy  Accuracy
Previous best £8.954 94.527 84.6° 87.1°¢ 90.5% 95.2°¢ 90.6°
T5-Small 79.10 87.24 63.3 76.4 56.9 81.6 46.0
T5-Base 85.44 92.08 76.2 81.4 86.2 94.0 71.2
T5-Large 86.66 93.79 82.3 85.4 91.6 94.8 83.4
T5-3B 88.53 94.95 B86.4 £89.9 90.3 94.4 92.0
T5-11B 90.06 95.64 B89 91.0 93.0 96.4 94.8
MultiRC  MultiRC  ReCoRD  ReCoRD RTE WiC WSsC
Model Fla EM F1 Accuracy  Accuracy  Accuracy  Accuracy
Previous best 84.4°¢ 52.5°¢ 90.6° 90.0¢ 88.2¢ 69.9¢ 89.0°
T5-Small 69.3 26.3 56.3 55.4 73.3 66.9 70.5
Th-Base T9.7 43.1 75.0 74.2 81.5 68.3 80.8
T5-Large 83.3 50.7 86.8 85.9 87.8 69.3 86.3
T5-3B 86.8 58.3 91.2 90.4 90.7 72.1 90.4
T5-11B 88.2 62.3 93.3 92.5 92,5 T6.1 93.8
WMT EnDe  WMT EnFr WMT EnRo CNN/DM CNN/DM  CNN/DM
Model BLEU BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
Previous best 33.87 43.8f 38.59 43.47h 20.30" 40.63"
T5H-Small 26.7 36.0 26.8 41.12 19.56 38.35
T5-Base 30.9 41.2 28.0 42.05 20.34 39.40
Th-Large 32.0 41.5 28.1 42.50 20.68 39.75
T5-3B 31.8 42.6 28.2 42.72 21.02 39.94
T5-11B 32.1 43.4 28.1 43.52 21.55 40.69

Table 14: Performance of our T5 variants on every task we study. Small, Base, Large, 3B,
and 11B refer to model configurations with 60 million, 220 million, 770 million, 3 billion, and
11 billion parameters, respectively. In the first row of each table, we report the state-of-the-art
for the task, with the superscript denoting its source with references listed at the end of this
caption. All results are reported on the test set except for SQuUAD where we use the validation
set. “[Lan et al., 2019] *[Wang et al., 2019¢] °[Zhu et al., 2019] ¢[Yang et al., 2019] ¢[Liu et al.,
2019¢] /[Edunov et al., 2018] ¢[Lample and Conneau, 2019] "[Dong et al., 2019]



